Data in context with metaphactory's flexible data cataloging capabilities

(Reading time: 4 - 7 minutes)
Data in context with metaphactory's flexible data cataloging capabilities

Timely access to consumable, contextual, and actionable knowledge is crucial for any step in the decision-making process and the key enabler of decision intelligence. However, decision makers and decision support systems are still faced with the everlasting challenge that data relevant to and required for addressing their specific information needs is stored in distributed and database- or application-specific silos.

Continue reading ...

Investigative knowledge graph exploration & targeted problem solving with metaphactory’s pathfinding interface

(Reading time: 4 - 8 minutes)
metaphactory 4.3 delivers new interactive pathfinding interface

Finding paths in a graph is a well defined space in mathematics and computer science. The Seven Bridges of Königsberg problem from 1736 - which asked to devise a roundtrip through the city of Königsberg in Prussia while crossing each bridge in the city only once - is one of the most famous real world problems and resulted in the foundations of today's graph theory.

While the term pathfinding might often be associated with finding the shortest path (for example, in a geographical context or in computer networks), the seven bridges problem is a good example showing that the shortest path is not necessarily the optimal or desired path for a given problem or information need.

Although they are graph databases, semantic graph databases lacked native support for pathfinding algorithms for a time (with a few exceptions). This was initially mainly due to the slightly different focus on data integration and a very expressive and standardized query language, SPARQL. SPARQL itself is a graph pattern matching language, which may naturally come with some trade-offs (e.g., in terms of index design, query optimization and computing cost) when applied to other use cases such as pathfinding.

With matured technology, evolution of standards and increased availability of computing resources, nowadays, most RDF databases natively support pathfinding algorithms. Most recently, our partner Ontotext released GraphDB 9.9 featuring sophisticated pathfinding algorithms which are fully compliant with and accessible through standard SPARQL 1.1 service extensions. See [1] and [2].

Following our mission, we have taken up the challenge to enable business users and domain experts to utilize this functionality without having knowledge about SPARQL or the particulars of pathfinding algorithms. When designing metaphactory's new visual pathfinding interface - released just last week with metaphactory 4.3, we focused on two primary usage scenarios:

Continue reading ...

Building a Knowledge Graph Application is easier than ever with metaphactory’s intuitive wizards

(Reading time: 5 - 10 minutes)
metaphactory interactive wizards for building Knowledge Graph Applications

Many enterprises have identified Knowledge Graphs as the foundation for unlocking the value of their data assets, easing knowledge discovery and surfacing previously unknown insights and relations in their data. But while the benefits of Knowledge Graphs have become clear, the road to implementation has often been long and complex. Success in making these benefits tangible to the actual business users who interact with and rely on this data on a daily basis has required the involvement of seasoned knowledge graph experts.

In this blog post, we provide an introduction into metaphactory's intuitive and interactive wizards which support application engineers in quickly and visually setting up and configuring search and authoring interfaces that cater to specific end-user information needs. The wizards (introduced recently with the metaphactory 4.2 release ) are one of the pillars of metaphactory's low-code approach for building knowledge graph applications. They allow application engineers to focus entirely on translating end-user information needs into intuitive, model-driven interfaces without getting caught up in the technical details of the semantic technologies stack.

Continue reading ...

Visual Ontology Modeling for Domain Experts and Business Users with metaphactory

(Reading time: 4 - 8 minutes)
Visual Ontology Modeling for Domain Experts and Business Users with metaphactory

In my previous blog post on building Knowledge Graph-driven, FAIR Data platforms I discussed the importance of data and data-driven decisions, processes and tools in accelerating digital transformation. Knowledge Graphs have revolutionized the way data can be accessed and used, and have helped enterprises overcome the challenges posed by distributed silos where information is available to limited audiences, in heterogeneous formats, and represented according to different models. They have led to great advances in terms of data integration, interoperability and accessibility, and have allowed companies to tap into the full potential of their data assets and transform data into valuable and actionable knowledge.

With metaphactory, our customers have been able to rapidly build Knowledge Graph-based applications enabling them to focus on business outcomes, reduce development efforts and quickly produce results that matter:

  • Customers in Life Sciences & Pharma have been able to fast-track drug development and drug repurposing.
  • Customers in Engineering & Manufacturing have established smart manufacturing processes and have sped up research, documentation processes and industrial configuration management.
  • Customers in Government and Cultural Heritage organizations have streamlined data curation and digital publishing processes, making cultural heritage content intuitively available to the public.

All of these applications utilize a semantic data model to not only describe the domain, but also drive data integration, tie in term vocabularies, or derive UI templates to create a model-driven user interface. Such a semantic data model is called an ontology. According to Gartner, "Ontologies are structural frameworks for organizing information and are used as knowledge representation. Ontology management supports and expands data modeling methodologies to exploit the business value locked up in information silos."

Continue reading ...

Hello, metaphactory!

(Reading time: 3 - 6 minutes)
metaphactory Logo

Our mission at metaphacts has always been to ease the onboarding into the world of enterprise knowledge graphs. With our product metaphactory we provide an end-to-end platform to support that mission and enable our clients in unlocking the value of their data assets. Since we first published metaphactory in 2015, with every new release we have introduced new features and capabilities to enable rich end-user experiences in interacting with knowledge graphs.

Through our blog, we want to continuously share some of the recent developments, examples, best practices and make the power of knowledge graph technologies more accessible for you.

Just today we released metaphactory 3.6, so this is a great opportunity to start this blog with showing you some cool new additions to our product. With our most recent release, we have introduced a series of new components and enhancements that help provide a more intuitive user experience and user interaction. These new components cater to user needs across all platform target user groups: end users, developers focused on building end-user oriented applications, as well as knowledge graph experts.

Continue reading ...